Steroid-based facial amphiphiles for stabilization and crystallization of membrane proteins.
نویسندگان
چکیده
Amphiphile selection is a critical step for structural studies of membrane proteins (MPs). We have developed a family of steroid-based facial amphiphiles (FAs) that are structurally distinct from conventional detergents and previously developed FAs. The unique FAs stabilize MPs and form relatively small protein-detergent complexes (PDCs), a property considered favorable for MP crystallization. We attempted to crystallize several MPs belonging to different protein families, including the human gap junction channel protein connexin 26, the ATP binding cassette transporter MsbA, the seven-transmembrane G protein-coupled receptor-like bacteriorhodopsin, and cytochrome P450s (peripheral MPs). Using FAs alone or mixed with other detergents or lipids, we obtained 3D crystals of the above proteins suitable for X-ray crystallographic analysis. The fact that FAs enhance MP crystallizability compared with traditional detergents can be attributed to several properties, including increased protein stability, formation of small PDCs, decreased PDC surface flexibility, and potential to mediate crystal lattice contacts.
منابع مشابه
Tandem facial amphiphiles for membrane protein stabilization.
We describe a new type of synthetic amphiphile that is intended to support biochemical characterization of intrinsic membrane proteins. Members of this new family displayed favorable behavior with four of five membrane proteins tested, and these amphiphiles formed relatively small micelles.
متن کاملA new class of amphiphiles bearing rigid hydrophobic groups for solubilization and stabilization of membrane proteins.
Integral membrane proteins (IMPs) are crucial cellular components, mediating the transfer of material and signals between the environment and the cytoplasm, or between different cellular compartments. Structural and functional analysis of IMPs is important; more than half of current pharmaceutical agents target proteins in this class. IMP characterization is often challenging, and sometimes imp...
متن کاملTripod Amphiphiles for Membrane Protein Manipulation.
Integral membrane proteins (IMPs) are crucial biological components, mediating the transfer of material and information between cells and their environment. Many IMPs have proven to be difficult to isolate and study. High-resolution structural information on this class of proteins is limited, largely because of difficulties in generating soluble forms of such proteins that retain native folding...
متن کاملAdamantane-based amphiphiles (ADAs) for membrane protein study: importance of a detergent hydrophobic group in membrane protein solubilisation.
We prepared adamantane-containing amphiphiles and evaluated them using a large membrane protein complex in terms of protein solubilisation and stabilization efficacy. These agents were superior to conventional detergents, especially in terms of the membrane protein solubilisation efficiency, implying a new detergent structure-property relationship.
متن کاملConversion of a mechanosensitive channel protein from a membrane-embedded to a water-soluble form by covalent modification with amphiphiles.
Covalent modification of integral membrane proteins with amphiphiles may provide a general approach to the conversion of membrane proteins into water-soluble forms for biophysical and high-resolution structural studies. To test this approach, we mutated four surface residues of the pentameric Mycobacterium tuberculosis mechanosensitive channel of large conductance (MscL) to cysteine residues as...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 110 13 شماره
صفحات -
تاریخ انتشار 2013